Identification of Escherichia coli O157 : H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis

Author:

Dziva Francis1,van Diemen Pauline M.1,Stevens Mark P.1,Smith Amanda J.1,Wallis Timothy S.1

Affiliation:

1. Mammalian Enteric Pathogens Group, Division of Microbiology, Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK

Abstract

Enterohaemorrhagic Escherichia coli (EHEC) cause acute gastroenteritis in humans that may be complicated by life-threatening systemic sequelae. The predominant EHEC serotype affecting humans in the UK and North America is O157 : H7 and infections are frequently associated with contact with ruminant faeces. Strategies to reduce the carriage of EHEC in ruminants are expected to lower the incidence of human EHEC infections; however, the molecular mechanisms underlying persistence of EHEC in ruminants are poorly understood. This paper reports the first comprehensive survey for EHEC factors mediating colonization of the bovine intestines by using signature-tagged transposon mutagenesis. Seventy-nine E. coli O157 : H7 mutants impaired in their ability to colonize calves were isolated and 59 different genes required for intestinal colonization were identified by cloning and sequencing of the transposon insertion sites. Thirteen transposon insertions were clustered in the locus of enterocyte effacement (LEE), which encodes a type III protein secretion system required for the formation of attaching and effacing lesions on intestinal epithelia. A putative structural component of the apparatus (EscN) is essential for intestinal colonization; however, the type III secreted effector protein Map plays only a minor role. Other Type III secretion-associated genes were implicated in colonization of calves by E. coli O157 : H7, including z0990 (ecs0850), which encodes the non-LEE-encoded type III secreted effector NleD and the closely related z3023 (ecs2672) and z3026 (ecs2674) genes which encode homologues of Shigella IpaH proteins. We also identified a novel fimbrial locus required for intestinal colonization in calves by E. coli O157 : H7 (z2199-z2206; ecs2114-ecs2107/locus 8) and demonstrated that a mutant harbouring a deletion of the putative major fimbrial subunit gene is rapidly out-competed by the parent strain in co-infection studies. Our data provide valuable new information for the development of intervention strategies.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3