Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae , and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov.

Author:

Chen Hong1,Jogler Mareike21,Rohde Manfred3,Klenk Hans-Peter2,Busse Hans-Jürgen4,Tindall Brian J.2,Spröer Cathrin2,Overmann Jörg21

Affiliation:

1. Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 80539 Munich, Germany

2. Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, 38124 Braunschweig, Germany

3. Helmholtz-Zentrum für Infektionsforschung, Medizinische Mikrobiologie, 38106 Braunschweig, Germany

4. Institute of Bacteriology, Mycology and Hygiene (IBMH), University of Veterinary Medicine Vienna, A-1210 Vienna, Austria

Abstract

Two novel chemo-organoheterotrophic members of the Sphingomonadaceae were isolated from alpine and pre-alpine lakes. Cells stained Gram-negative, were motile and rod-shaped, and formed yellow, circular, convex colonies on different agar media. Strains 301T and 469T were strictly aerobic, catalase- and oxidase-positive, and grew at temperatures between 10 and 40 °C (optimum, 28 °C), and at pH values between 5 and 10 (optimum, pH 7). Both strains contained Q-10 as the dominant quinone, sphingoglycolipids and 2-hydroxymyristic acid, whereas 3-hydroxy fatty acids were absent. Major fatty acids of strain 301T were C18 : 1ω7c (53.3 %) and C16 : 1ω7c (22.9 %), with C14 : 0 2-OH (10.8 %) as the major 2-hydroxy fatty acid. Fatty acids of strain 469T were dominated by C18 : 1ω7c (34.4 %), C16 : 1ω7c (32.0 %) and C14 : 0 2-OH (15.2 %) as the major 2-hydroxy fatty acid. The genomic DNA G+C contents of strains 301T and 469T were 63.4 and 64.6 mol%, respectively. 16S rRNA gene sequence comparison indicated that both strains belonged to the genus Sphingobium . This classification was supported by the presence of spermidine as the major polyamine. The phylogenetically closest relatives of strain 301T were Sphingobium amiense DSM 16289T, Sphingobium vermicomposti DSM 21299T, Sphingobium yanoikuyae DSM 7462T and Sphingobium scionense DSM 19371T (98.8, 98.0, 97.9 and 97.4 % sequence similarity, respectively). DNA–DNA hybridization of genomic DNA yielded similarities in the range 43.2–12.1 % between strain 301T and the type strains of these four Sphingobium species. Closest relatives of strain 469T were Sphingomonas suberifaciens DSM 7465T and Sphingobium scionense DSM 19371T (97.1 and 96.5 % 16S rRNA gene sequence similarity, respectively). The degree of DNA–DNA hybridization between strain 469T and Sphingomonas suberifaciens DSM 7465T was 17.9 %. Based on the results of the molecular analyses and their phenotypic characteristics, strains 301T and 469T represent two novel species of the genus Sphingobium . The name Sphingobium limneticum sp. nov. is proposed for strain 301T( = DSM25076T = LMG 26659T). The name Sphingobium boeckii sp. nov. is proposed for strain 469T ( = DSM 25079T = LMG 26901T). The polyphasic analysis also suggests that Sphingomonas suberifaciens should be reclassified as Sphingobium suberifaciens comb. nov. with Ca1T ( = EY 2404T = ATCC 49355T = CIP 105429T = DSM 7465T = ICMP 12535T = NBRC 15211T = JCM 8521T = LMG 17323T = NCPPB 3629T) as the type strain.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3