The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus

Author:

Yin Xihou1,Zabriskie T. Mark1

Affiliation:

1. Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, USA

Abstract

The biosynthetic gene cluster for the 17 aa peptide antibiotic enduracidin has been cloned and sequenced from Streptomyces fungicidicus ATCC 21013. The 84 kb gene cluster contains 25 ORFs and is located within a 116 kb genetic locus that was fully sequenced. Targeted disruption of non-ribosomal peptide synthetase (NRPS) genes in the cluster abolished enduracidin production and confirmed function. The cluster includes four genes, endA-D, encoding two-, seven-, eight- and one-module NRPSs, respectively, and includes unique modules for the incorporation of citrulline and enduracididine. The NRPS organization generally follows the collinearity principle, and starts with a condensation domain (C domain) similar to those found in other lipopeptide systems for the coupling of an acyl group to the starting amino acid. The sixth module of EndB, corresponding to Thr8, is missing an adenylation domain (A domain) and this module is presumed to be loaded in trans by the single module protein EndD. The most striking feature of the NRPS organization is the lack of epimerization domains (E domains) in light of the fact that the product has seven d-amino acid residues. Sequence analysis reveals that C domains following modules corresponding to d-amino acids belong to a unique subset of C domains able to catalyse both epimerization and condensation reactions. Other genes directing lipid modification and activation, and formation of the non-proteinogenic amino acids 4-hydroxyphenylglycine and enduracididine are readily identified, as are genes possibly involved in regulation of antibiotic biosynthesis and export. These findings provide the basis to further genetically manipulate and improve lipodepsipeptide antibiotics via combinatorial and chemical methods.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3