Hypoxia dampens innate immune signalling at early time points and increases Zika virus RNA levels in iPSC-derived macrophages

Author:

Schilling Mirjam1ORCID,Vaughan-Jackson Alun2ORCID,James William2ORCID,McKeating Jane A.1ORCID

Affiliation:

1. Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK

2. James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK

Abstract

Type I interferons (IFNs) are the major host defence against viral infection and are induced following activation of cell surface or intracellular pattern recognition receptors, including retinoic-acid-inducible gene I (RIG-I)-like receptors (RLRs). All cellular processes are shaped by the microenvironment and one important factor is the local oxygen tension. The majority of published studies on IFN signalling are conducted under laboratory conditions of 18% oxygen (O2), that do not reflect the oxygen levels in most organs (1–5 % O2). We studied the effect of low oxygen on IFN induction and signalling in induced Pluripotent Stem Cell (iPSC)-derived macrophages as a model for tissue-resident macrophages and assessed the consequence for Zika virus (ZIKV) infection. Hypoxic conditions dampened the expression of interferon-stimulated genes (ISGs) following RLR stimulation or IFN treatment at early time points. RNA-sequencing and bio-informatic analysis uncovered several pathways including changes in transcription factor availability, the presence of HIF binding sites in promoter regions, and CpG content that may contribute to the reduced ISG expression. Hypoxic conditions increased the abundance of ZIKV RNA highlighting the importance of understanding how low oxygen conditions in the local microenvironment affect pathogen sensing and host defences.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3