Encoding of a transgene in-frame with a Newcastle disease virus protein increases transgene expression and stability

Author:

Elbehairy Mohamed A.12,Samal Siba K.12,Belov George A.2ORCID

Affiliation:

1. Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt

2. Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA

Abstract

Newcastle disease virus (NDV) has been extensively explored as a vector for vaccine and oncolytic therapeutic development. In conventional NDV-based vectors, the transgene is arranged as a separate transcription unit in the NDV genome. Here, we expressed haemagglutinin protein (HA) of an avian influenza virus using an NDV vector design in which the transgene ORF is encoded in-frame with the ORF of an NDV gene. This arrangement does not increase the number of transcription units in the NDV genome, and imposes a selection pressure against mutations interrupting the transgene ORF. We placed the HA ORF upstream or downstream of N, M, F and HN ORFs of NDV so that both proteins are encoded in-frame and are separated by either a self-cleaving 2A peptide, furin cleavage site or both. Only constructs in which HA was placed downstream of the NDV HN were viable. These constructs expressed the transgene at a higher level compared to the vector encoding the same transgene in the same position in the NDV genome but as a separate transcription unit. Furthermore, the transgene expressed in one ORF with the NDV protein proved to be more stable over multiple passages. Thus, this design may be useful for applications where the stability of the transgene expression is highly important for a recombinant NDV vector.

Funder

NIAID

Maryland Agricultural Experimental Station

Publisher

Microbiology Society

Subject

Virology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3