Internalization of rabies virus glycoprotein differs between pathogenic and attenuated virus strains

Author:

Almasoud Ibrahim12ORCID,Charlton Frank W.1,Finke Stefan3,Barr John N.1ORCID,Mankouri Jamel1

Affiliation:

1. School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

2. Present address: Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait

3. Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany

Abstract

The zoonotic rabies virus (RABV) is a non-segmented negative-sense RNA virus classified within the family Rhabdoviridae, and is the most common aetiological agent responsible for fatal rabies disease. The RABV glycoprotein (G) forms trimeric spikes that protrude from RABV virions and mediate virus attachment, entry and spread, and is a major determinant of RABV pathogenesis. A range of RABV strains exist that are highly pathogenic in part due to their ability to evade host immune detection. However, some strains are disease-attenuated and can be cleared by host defences. A detailed molecular understanding of how strain variation relates to pathogenesis is currently lacking. Here, we reveal key differences in the trafficking profiles of RABV-G proteins from the challenge virus standard strain (CVS-11) and a highly attenuated vaccine strain SAD-B19 (SAD). We show that CVS-G traffics to the cell surface and undergoes rapid internalization through both clathrin- and cholesterol-dependent endocytic pathways. In contrast, SAD-G remains resident at the plasma membrane and internalizes at a significantly slower rate. Through engineering hybrids of CVS-G and SAD-G, we show that the cytoplasmic tail of CVS-G is the key determinant of these different internalization profiles. Alanine scanning further revealed that mutation of Y497 in CVS-G (H497 in SAD-G) could reduce the rate of internalization to SAD-G levels. Together, these data reveal new phenotypic differences between CVS-G and SAD-G proteins that may contribute to altered in vivo pathogenicity.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3