Eilat virus (EILV) causes superinfection exclusion against West Nile virus (WNV) in a strain-specific manner in Culex tarsalis mosquitoes

Author:

Joseph Renuka E.123,Bozic Jovana23,Werling Kristine L.43,Krizek Rachel S.512,Urakova Nadya63,Rasgon Jason L.5213ORCID

Affiliation:

1. The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA

2. Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA

3. Department of Entomology, Pennsylvania State University, University Park, PA, USA

4. Present address: Sherlock Biosciences, Watertown, MA, USA

5. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA

6. Present address: Oxford University, Oxford, UK

Abstract

West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains – WN02-1956 and NY99 – were suppressed by EILV in C6/36 cells as early as 48–72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.

Funder

National Institutes of Health

National Science Foundation

U.S. Department of Agriculture

Pennsylvania Department of Health

Huck Institutes of the Life Sciences

Publisher

Microbiology Society

Reference61 articles.

1. The outbreak of West Nile virus infection in the New York city area in 1999 abstract;Enis;N Engl J Med,2001

2. West nile virus: an historical overview;Sejvar;Ochsner J,2003

3. West Nile virus in the USA

4. West Nile virus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3