Open reading frames M12/M13 jointly contribute to MHV-68 latency

Author:

Steer Beatrix1,Adler Barbara2,Adler Heiko13ORCID

Affiliation:

1. Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Member of the German Center of Lung Research (DZL), Munich, Germany

2. Max von Pettenkofer-Institute and Gene Center, Virology, Ludwig-Maximilians-University Munich, Munich, Germany

3. Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), Munich, Germany

Abstract

Murine gammaherpesvirus 68 (MHV-68), a widely used small-animal model for the analysis of gammaherpesvirus pathogenesis, encodes the MHV-68-specific ORFs M12 and M13. The function of M12 and M13 has not been investigated so far. Therefore, we constructed and analysed recombinant MHV-68 with mutations in either M12, M13 or M12/M13. Both the M12 and M13 mutants did not display any phenotype in vitro or in vivo. However, although the M12/13 double mutant showed similar lytic growth in fibroblasts in vitro and in the lungs of infected mice as wild-type MHV-68, it was significantly attenuated in vivo during latency. This phenotype was completely restored in a revertant of the M12/13 double mutant. Thus, it appears that M12 and M13 might have redundant functions that are only revealed if both genes are lacking. The observation that M12/13 have a function during latency not only contributes to the further understanding of the pathogenesis of MHV-68 infection but might also be of interest considering that M12/13 are located at a genomic position similar to that of LMP2A and K15. The latter are important proteins of their respective human gammaherpesviruses EBV and KSHV that contribute to cellular survival, cell activation and proliferation, which was deduced from in vitro studies.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3