Affiliation:
1. Present address: Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
2. School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
Abstract
The hepatitis C virus (HCV) NS5A protein is comprised of three domains (D1–3). Previously, we observed that two alanine substitutions in D1 (V67A, P145A) abrogated replication of a genotype 2a isolate (JFH-1) sub-genomic replicon (SGR) in Huh7 cells, but this phenotype was partially restored in Huh7.5 cells. Here we demonstrate that five additional residues, surface-exposed and proximal to V67 or P145, exhibited the same phenotype. In contrast, the analogous mutants in a genotype 3a isolate (DBN3a) SGR exhibited different phenotypes in each cell line, consistent with fundamental differences in the functions of genotypes 2 and 3 NS5A. The difference between Huh7 and Huh7.5 cells was reminiscent of the observation that cyclophilin inhibitors are more potent against HCV replication in the former and suggested a role for D1 in cyclophilin dependence. Consistent with this, all JFH-1 and DBN3a mutants exhibited increased sensitivity to cyclosporin A treatment compared to wild-type. Silencing of cyclophilin A (CypA) in Huh7 cells inhibited replication of both JFH-1 and DBN3a. However, in Huh7.5 cells CypA silencing did not inhibit JFH-1 wild-type, but abrogated replication of all the JFH-1 mutants, and both DBN3a wild-type and all mutants. CypB silencing in Huh7 cells had no effect on DBN3a, but abrogated replication of JFH-1. CypB silencing in Huh7.5 cells had no effect on either SGR. Lastly, we confirmed that JFH-1 NS5A D1 interacted with CypA in vitro. These data demonstrate both a direct involvement of NS5A D1 in cyclophilin-dependent genome replication and functional differences between genotype 2 and 3 NS5A.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献