RNA silencing machinery contributes to inability of BSBV to establish infection in Nicotiana benthamiana: evidence from characterization of agroinfectious clones of Beet soil-borne virus

Author:

Mahillon Mathieu1ORCID,Decroës Alain1ORCID,Peduzzi Chloé1ORCID,Romay Gustavo1ORCID,Legrève Anne1ORCID,Bragard Claude1ORCID

Affiliation:

1. UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium

Abstract

Beet soil-borne virus (BSBV) is a sugar beet pomovirus frequently associated with Beet necrotic yellow veins virus, the causal agent of the rhizomania disease. BSBV has been detected in most of the major beet-growing regions worldwide, yet its impact on this crop remains unclear. With the aim to understand the life cycle of this virus and clarify its putative pathogenicity, agroinfectious clones have been engineered for each segment of its tripartite genome. The biological properties of these clones were then studied on different plant species. Local infection was obtained on agroinfiltrated leaves of Beta macrocarpa. On leaves of Nicotiana benthamiana, similar results were obtained, but only when heterologous viral suppressors of RNA silencing were co-expressed or in a transgenic line down regulated for both dicer-like protein 2 and 4. On sugar beet, local infection following agroinoculation was obtained on cotyledons, but not on other tested plant parts. Nevertheless, leaf symptoms were observed on this host via sap inoculation. Likewise, roots were efficiently mechanically infected, highlighting low frequency of root necrosis and constriction, and enabling the demonstration of transmission by the vector Polymyxa betae. Altogether, the entire viral cycle was reproduced, validating the constructed agroclones as efficient inoculation tools, paving the way for further studies on BSBV and its related pathosystem.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3