Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India

Author:

Ghosh Wriddhiman1,Bagchi Angshuman2,Mandal Sukhendu1,Dam Bomba1,Roy Pradosh1

Affiliation:

1. Department of Microbiology, Bose Institute, P-1/12 C. I. T. Scheme, VII M, Kolkata – 700 054, India

2. Bioinformatics Center, Bose Institute, P-1/12 C. I. T. Scheme, VII M, Kolkata – 700 054, India

Abstract

Twelve chemolithotrophic strains were isolated from temperate orchard soil on reduced sulfur compounds as energy and electron sources and characterized on the basis of their physiological properties and ability to oxidize various reduced sulfur compounds. The new isolates could oxidize tetrathionate as well as thiosulfate, and oxidation of the latter involved conversion of thiosulfate to tetrathionate followed by its accumulation and eventual oxidation to sulfate, manifested in the production of acid. The mesophilic, neutrophilic, Gram-negative and coccoid bacteria had a respiratory metabolism. Physiologically and biochemically, all the strains were more or less similar, differing only in their growth rates and ability to utilize a few carbon compounds as single heterotrophic substrates. 16S rRNA gene sequence analysis was performed with five representative strains, which revealed a high degree of similarity (⩾99 %) among them and placed the cluster in the ‘Betaproteobacteria’. The strains showed low levels (93·5–95·3 %) of 16S rRNA gene sequence similarity toPigmentiphaga kullae,Achromobacter xylosoxidans,Pelistega europaeaand species belonging to the generaAlcaligenes,TaylorellaandBordetella. The taxonomic coherence of the new isolates was confirmed by DNA–DNA hybridization. On the basis of their uniformly low 16S rRNA gene sequence similarities to species of all the closest genera, unique fatty acid profile, distinct G+C content (54–55·2 mol%) and phenotypic characteristics that include efficient chemolithotrophic utilization of tetrathionate, the organisms were classified in a new genus,Tetrathiobactergen. nov. In the absence of any significant discriminatory phenotypic or genotypic characteristics, all the new isolates are considered to constitute a single species, for which the nameTetrathiobacter kashmirensissp. nov. (type strain WT001T=LMG 22695T=MTCC 7002T) is proposed.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3