Molecular identification and characterization of novel coronaviruses infecting graylag geese (Anser anser), feral pigeons (Columbia livia) and mallards (Anas platyrhynchos)

Author:

Jonassen Christine Monceyron1,Kofstad Tone1,Larsen Inger-Lise1,Løvland Atle2,Handeland Kjell3,Follestad Arne4,Lillehaug Atle3

Affiliation:

1. Section for Virology and Serology, National Veterinary Institute, PO Box 8156 Dep., N-0033 Oslo, Norway

2. Section for Pathology, National Veterinary Institute, PO Box 8156 Dep., N-0033 Oslo, Norway

3. Section for Wildlife Diseases, National Veterinary Institute, PO Box 8156 Dep., N-0033 Oslo, Norway

4. Norwegian Institute for Nature Research, Tungasletta 2, N-7485 Trondheim, Norway

Abstract

In light of the finding of a previously unknown coronavirus as the aetiology of the severe acute respiratory syndrome (SARS), it is probable that other coronaviruses, than those recognized to date, are circulating in animal populations. Here, the results of a screening for coronavirus are presented, using a universal coronavirus RT-PCR, of the bird species graylag goose (Anser anser), feral pigeon (Columbia livia) and mallard (Anas platyrhynchos). Coronaviruses were found in cloacal swab samples from all the three bird species. In the graylag goose, 40 of 163 sampled birds were coronavirus positive, whereas two of 100 sampled pigeons and one of five sampled mallards tested positive. The infected graylag geese showed lower body weights compared with virus-negative birds, suggesting clinical significance of the infection. Phylogenetic analyses performed on the replicase gene and nucleocapsid protein sequences, indicated that the novel coronaviruses described in the present study all branch off from group III coronaviruses. All the novel avian coronaviruses harboured the conserved s2m RNA structure in their 3′ untranslated region, like other previously described group III coronaviruses, and like the SARS coronavirus. Sequencing of the complete nucleocapsid gene and downstream regions of goose and pigeon coronaviruses, evidenced the presence of two additional open reading frames for the goose coronavirus with no sequence similarity to known proteins, but with predicted transmembrane domains for one of the encoded proteins, and one additional open reading frame for the pigeon coronavirus, with a predicted transmembrane domain, downstream of the nucleocapsid gene.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3