Splicing of Cauliflower mosaic virus 35S RNA serves to downregulate a toxic gene product

Author:

Froissart Rémy1,Uzest Maryline1,Ruiz-Ferrer Virginia1,Drucker Martin1,Hébrard Eugénie1,Hohn Thomas2,Blanc Stéphane1

Affiliation:

1. UMR BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France

2. Friedrich Miescher Institut, PO Box 2543, CH-4002 Basel, Switzerland

Abstract

Alternative splicing usually leads to an increase in the number of gene products that can be derived from a single transcript. Here, a different and novel use of alternative splicing – as a means to control the amount of a potentially toxic gene product in the plant pararetrovirus Cauliflower mosaic virus (CaMV) – is reported. About 70 % of the CaMV 35S RNA, which serves as a substrate for both reverse transcription and polycistronic mRNA, is spliced into four additional RNA species. Splicing occurs between four donor sites – one in the 5′ untranslated region and three within open reading frame (ORF) I – and one unique acceptor site at position 1508 in ORF II. A previous study revealed that the acceptor site is vital for CaMV infectivity and expression of ORFs III and IV from one of the spliced RNA species suggested that splicing may facilitate expression of downstream CaMV ORFs. However, it is shown here that deleting the splice acceptor site and replacing ORF II with a cargo ORF that lacks splice acceptor sites does not interfere with virus proliferation. Furthermore, it is demonstrated that whenever P2 cannot accumulate in infected tissues, the splice acceptor site at position 1508 is no longer vital and has little effect on virus replication. This suggests that the vital role of splicing in CaMV is regulation of P2 expression and that P2 exhibits biological properties that, whilst indispensable for virus–vector interactions, can block in planta virus infection if this regulation is abolished.

Publisher

Microbiology Society

Subject

Virology

Reference36 articles.

1. Remodelling of the host cell RNA splicing machinery during an adenovirus infection;Akusjarvi;Curr Top Microbiol Immunol,2003

2. Biological activity of cauliflower mosaic virus aphid transmission factor expressed in a heterologous system;Blanc;Virology,1993

3. The aphid transmission factor of cauliflower mosaic virus forms a stable complex with microtubules in both insect and plant cells;Blanc;Proc Natl Acad Sci U S A,1996

4. Molecular basis of vector transmission: Caulimoviruses;Blanc,2001

5. A reverse transcriptase for cauliflower mosaic virus: state of the art, 1991;Bonneville,1993

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3