A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene

Author:

Hacker Caroline V.1,Brasier Clive M.2,Buck Kenneth W.1

Affiliation:

1. Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK

2. Forest Research Agency, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK

Abstract

A new dsRNA was isolated from a Phytophthora isolate from Douglas fir. Sequence analysis showed the dsRNA to consist of 13 883 bp and to contain a single open reading frame with the potential to encode a polyprotein of 4548 aa. This polyprotein contained amino acid sequence motifs characteristic of virus RNA-dependent RNA polymerases (RdRps) in its C-terminal region and motifs characteristic of RNA helicases in its N-terminal region. These sequence motifs were related to corresponding motifs in plant viruses in the genus Endornavirus. In phylogenetic trees constructed from the RdRp and helicase motifs of a range of ssRNA and dsRNA viruses, the Phytophthora RdRp and helicase sequences clustered with those of the plant endornaviruses with good bootstrap support. The properties of the Phytophthora dsRNA are consistent with its being classified as the first non-plant member of the genus Endornavirus, for which we propose the name phytophthora endornavirus 1 (PEV1). A region between the RdRp and helicase domains of the PEV1 protein had significant amino acid sequence similarity to UDP glycosyltransferases (UGTs). Two sequence motifs were identified, one characteristic of all UGTs and the other characteristic of sterol UGTs. The PEV1 UGT would be the first for an RNA virus, although ecdysteroid UGT genes have been found in many baculoviruses. The PEV1 UGT was only distantly related to baculovirus ecdysteroid UGTs, which belong to a family distinct from the sterol UGTs.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3