Propagation of a protease-resistant form of prion protein in long-term cultured human glioblastoma cell line T98G

Author:

Kikuchi Yutaka1,Kakeya Tomoshi1,Sakai Ayako1,Takatori Kosuke1,Nakamura Naoto2,Matsuda Haruo2,Yamazaki Takeshi3,Tanamoto Ken-ichi3,Sawada Jun-ichi4

Affiliation:

1. Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan

2. Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan

3. Division of Food Additives, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan

4. Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan

Abstract

Human prion diseases, such as Creutzfeldt–Jakob disease (CJD), a lethal, neurodegenerative condition, occur in sporadic, genetic and transmitted forms. CJD is associated with the conversion of normal cellular prion protein (PrPC) into a protease-resistant isoform (PrPres). The mechanism of the conversion has not been studied in human cell cultures, due to the lack of a model system. In this study, such a system has been developed by culturing cell lines. Human glioblastoma cell line T98G had no coding-region mutations of the prion protein gene, which was of the 129 M/V genotype, and expressed endogenous PrPC constitutively. T98G cells produced a form of proteinase K (PK)-resistant prion protein fragment following long-term culture and high passage number; its deglycosylated form was approximately 18 kDa. The PK-treated PrPres was detected by immunoblotting with the mAb 6H4, which recognizes residues 144–152, and a polyclonal anti-C-terminal antibody, but not by the mAb 3F4, which recognizes residues 109–112, or the anti-N-terminal mAb HUC2-13. These results suggest that PrPC was converted into a proteinase-resistant form of PrPres in T98G cells.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3