Foot-and-mouth disease virus replication sites form next to the nucleus and close to the Golgi apparatus, but exclude marker proteins associated with host membrane compartments

Author:

Knox Caroline1,Moffat Katy2,Ali Shireen2,Ryan Martin1,Wileman Thomas2

Affiliation:

1. University of St Andrews, School of Biology, Centre for Biomolecular Sciences, Biomolecular Sciences Building, North Haugh, St Andrews KY16 9ST, UK

2. Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK

Abstract

Picornavirus infection of cells generally results in the production of membranous vesicles containing the viral proteins necessary for viral RNA synthesis. To determine whether foot-and-mouth disease virus (FMDV) infection induced similar structures, and which cellular components were involved, the subcellular distribution of FMDV proteins was compared with protein markers of cellular membrane compartments. Using immunofluorescence analysis and digital deconvolution, it was shown that FMDV structural and non-structural proteins co-localize to punctate structures in juxtanuclear virus assembly sites close to the Golgi complex. Significantly, viral protein 2C did not co-localize with marker proteins of thecis- ormedial-Golgi compartments ortrans-Golgi network. Furthermore, incubation of infected cells with brefeldin A caused a redistribution of Golgi proteins to the endoplasmic reticulum, but did not affect the distribution of 2C and, by inference, the integrity of the virus assembly site. Taken with the observation that 2C was membrane-associated, but failed to fractionate with Golgi markers on density gradients, it was possible to conclude that Golgi membranes were not a source of structures containing 2C. Further immunofluorescence analysis showed that 2C was also separate from marker proteins of the endoplasmic reticulum, endoplasmic reticulum intermediate compartment, endosomes and lysosomes. The results suggest that the membranes generated at FMDV assembly sites are able to exclude organelle-specific marker proteins, or that FMDV uses an alternative source of membranes as a platform for assembly and replication.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3