Co-existence of bla OXA-23 and armA in multidrug-resistant Acinetobacter baumannii isolated from a hospital in South Korea

Author:

Hong Seung Bok1,Shin Kyeong Seob2,Ha Jungsu3,Han Kyudong3

Affiliation:

1. Department of Clinical Laboratory Science, Chungbuk Health & Science University, Republic of Korea

2. Department of Laboratory Medicine, College of Medicine, Chungbuk National University, Republic of Korea

3. Department of Nanobiomedical Science & WCU Research Center, Dankook University, Cheonan 330-714, Republic of Korea

Abstract

The co-existence of carbapenemase, 16S rRNA methylase and mutated quinolone resistance-determining regions (QRDRs) can cause serious difficulty in treating infections with multidrug-resistant Acinetobacter baumannii. In this study, we aimed to determine the mechanisms of imipenem, amikacin and ciprofloxacin resistance in A. baumannii isolates with resistance to these antibiotics. A total of 31 non-duplicate isolates of amikacin- and ciprofloxacin-resistant Acinetobacter isolates were identified from April to August 2010 from a single hospital in South Korea. To assess the clonal relatedness of the 31 Acinetobacter isolates, multilocus sequence typing, network phylogenetic analysis and enterobacterial repetitive intergenic consensus-PCR were utilized. Detection of OXA-type carbapenemase and 16S rRNA methylase was conducted using a multiplex PCR assay. The QRDRs of the gyrA and parC genes were amplified and sequenced. The result showed that 30/31 isolates harboured the bla OXA-23-like carbapenemase, which made them resistant to imipenem (MICs ≥16 µg ml−1). Twenty-eight of the 31 isolates were found to possess armA, a 16S rRNA methylase gene, and showed resistance to amikacin, arbekacin, gentamicin and tobramycin (MICs >256 µg ml−1). All of the isolates were determined to carry QRDR mutations in both gyrA and parC: a Ser83Leu substitution in gyrA and a Ser80Leu substitution in parC, causing a ciprofloxacin MIC ≥64 µg ml−1. In conclusion, A. baumannii with co-existence of carbapenemase, 16S rRNA methylase and mutated QRDRs are extremely prevalent in South Korea, which may cause serious problems in the treatment of A. baumannii infections using carbapenem, amikacin and ciprofloxacin.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3