Gas-chromatographic lipid profiles in identification of currently known slowly growing environmental mycobacteria

Author:

Torkko Pirjo1,Katila Marja-Leena1,Kontro Merja1

Affiliation:

1. Laboratory of Environmental Microbiology, National Public Health Institute, PO Box 95, FIN-70701 Kuopio, Finland 2Department of Clinical Microbiology, Kuopio University Hospital, PO Box 1777, FIN-70211 Kuopio, Finland

Abstract

Cellular fatty acid analysis by GLC is widely used in the species identification of mycobacteria. Combining mycolic acid cleavage products with shorter cellular fatty acids increases the informative value of the analysis. A key has been created to aid in the identification of all currently known slowly growing environmental species. In this scheme, the species are classified into six categories, each characterized by a combination of fatty markers shared by those species. Within each category, individual species may be distinguished by the presence or absence of specific marker substances, such as methyl-branched fatty acids or secondary alcohols. This study also describes earlier unpublished GLC profiles of 14 rare, slowly growing, environmental mycobacteria, Mycobacterium asiaticum, Mycobacterium botniense, Mycobacterium branderi, Mycobacterium conspicuum, Mycobacterium cookii, Mycobacterium doricum, Mycobacterium heckeshornense, Mycobacterium heidelbergense, Mycobacterium hiberniae, Mycobacterium kubicae, Mycobacterium lentiflavum, Mycobacterium scrofulaceum, Mycobacterium triplex and Mycobacterium tusciae. Though no single identification technique alone, even sequencing of an entire single gene such as 16S rRNA, can identify all mycobacterial species accurately, GLC has proven to be both reliable and reproducible in the identification of slowly growing mycobacteria. In cases of earlier unknown species, it generates useful information that allows their further classification and may lead to the description of novel species.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3