Affiliation:
1. Departamento de Biomedicina Molecular, CINVESTAV-IPN, Apartado 14-740, México DF 07360, Mexico
2. Unidad de Investigación Biomédica, Centro Médico Nacional La Raza-IMSS, México DF, Mexico
Abstract
Infection with dengue virus type-2 (DENV-2) begins with virus adherence to cell surface receptors. In endothelial cells (HMEC-1), a cell model for DENV-2 infection, α5β3 integrin has been identified as a putative receptor for the virus. Previous work had suggested that the actin cytoskeleton of HMEC-1 cells plays an important role in virus entry and infection. In the present work, fixed and living HMEC-1 cells expressing enhanced green fluorescent protein–actin were monitored for actin reorganization after virus inoculation, utilizing fluorescence and time lapse microscopy. Cell infection and production of infective viruses were quantified using an anti-E protein antibody and by measuring the p.f.u. ml−1. Specific drugs that antagonize actin organization and regulate actin-signalling pathways were tested in viral adhesion and infection assays, as were the expression of dominant-negative Rac1 and Cdc42 proteins. Disorganization of actin precluded infection, while microtubule depolymerization had no effect. Activation of Rac1 and Cdc42 signalling, which occurs upon virus binding, induced reorganization of actin to form filopodia in the cellular periphery. Formation of filopodia was a requirement for virus entry and further cell infection. Expression of the dominant-negative proteins Rac1 and Cdc42 confirmed the role of these GTPases in the actin reorganization that is required to form filopodia. In addition, inhibition of the ATPase activity of myosin II greatly decreased infection, suggesting its participation in filopodial stability. We show here, for the first time, that internalization of DENV-2 into endothelial cells requires viral induction of dynamic filopodia regulated by Rac1 and Cdc42 cross-talk and myosin II motor activities.
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献