Affiliation:
1. Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
2. GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
Abstract
Expression of the pol-encoded proteins of human immunodeficiency virus type 1 (HIV-1) requires a programmed –1 ribosomal frameshift at the junction of the gag and pol coding sequences. Frameshifting takes place at a heptanucleotide slippery sequence, UUUUUUA, and is enhanced by a stimulatory RNA structure located immediately downstream. In patients undergoing viral protease (PR) inhibitor therapy, a p1/p6gag L449F cleavage site (CS) mutation is often observed in resistant isolates and frequently generates, at the nucleotide sequence level, a homopolymeric and potentially slippery sequence (UUUUCUU to UUUUUUU). The mutation is located within the stimulatory RNA downstream of the authentic slippery sequence and could act to augment levels of pol-encoded enzymes to counteract the PR deficit. Here, RNA secondary structure probing was employed to investigate the structure of a CS-containing frameshift signal, and the effect of this mutation on ribosomal frameshift efficiency in vitro and in tissue culture cells was determined. A second mutation, a GGG insertion in the loop of the stimulatory RNA that could conceivably lead to resistance by enhancing the activity of the structure, was also tested. It was found, however, that the CS and GGG mutations had only a very modest effect on the structure and activity of the HIV-1 frameshift signal. Thus the increased resistance to viral protease inhibitors seen with HIV-1 isolates containing mutations in the frameshifting signal is unlikely to be accounted for solely by enhancement of frameshift efficiency.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献