Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7

Author:

van Aken Danny1,Zevenhoven-Dobbe Jessika1,Gorbalenya Alexander E.1,Snijder Eric J.1

Affiliation:

1. Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC E4-P, PO Box 9600, 2300 RC Leiden, The Netherlands

Abstract

The positive-stranded RNA genome of the arterivirus Equine arteritis virus (order Nidovirales) encodes the partially overlapping replicase polyproteins pp1a (1727 aa) and pp1ab (3175 aa). Previously, three viral proteinases were reported to cleave these large polyproteins into 12 non-structural proteins (nsps). The chymotrypsin-like viral main proteinase residing in nsp4 is responsible for eight of these cleavages. Processing of the C-terminal half of pp1a (the nsp3–8 region) was postulated to occur following either of two alternative proteolytic pathways (the ‘major’ and ‘minor’ pathways). Here, the importance of these two pathways was investigated by using a reverse-genetics system and inactivating each of the cleavage sites by site-directed mutagenesis. For all of these pp1a cleavage sites, mutations that prevented cleavage by the nsp4 proteinase were found to block or severely inhibit EAV RNA synthesis. Furthermore, our studies identified a novel nsp4 cleavage site (Glu-1575/Ala-1576) that is located within nsp7 and is conserved in arteriviruses. The N-terminal nsp7 fragment (nsp7α) derived from this cleavage was detected in lysates of both EAV-infected cells and cells transiently expressing pp1a. Mutagenesis of the novel cleavage site in the context of an EAV full-length cDNA clone proved to be lethal, underlining the fact that the highly regulated, nsp4-mediated processing of the C-terminal half of pp1a is a crucial event in the arterivirus life cycle.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3