Impaired hyperphosphorylation of rotavirus NSP5 in cells depleted of casein kinase 1α is associated with the formation of viroplasms with altered morphology and a moderate decrease in virus replication

Author:

Campagna Michela1,Budini Mauricio2,Arnoldi Francesca1,Desselberger Ulrich1,Allende Jorge E.2,Burrone Oscar R.1

Affiliation:

1. International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34011 Trieste, Italy

2. Instituto de Ciencias Biomedicas, Programa de Biologia Celular y Molecular, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453 Santiago, Chile

Abstract

The rotavirus (RV) non-structural protein 5, NSP5, is encoded by the smallest of the 11 genomic segments and localizes in ‘viroplasms’, cytoplasmic inclusion bodies in which viral RNA replication and packaging take place. NSP5 is essential for the replicative cycle of the virus because, in its absence, viroplasms are not formed and viral RNA replication and transcription do not occur. NSP5 is produced early in infection and undergoes a complex hyperphosphorylation process, leading to the formation of proteins differing in electrophoretic mobility. The role of hyperphosphorylation of NSP5 in the replicative cycle of rotavirus is unknown. Previous in vitro studies have suggested that the cellular kinase CK1α is responsible for the NSP5 hyperphosphorylation process. Here it is shown, by means of specific RNA interference, that in vivo, CK1α is the enzyme that initiates phosphorylation of NSP5. Lack of NSP5 hyperphosphorylation affected neither its interaction with the virus VP1 and NSP2 proteins normally found in viroplasms, nor the production of viral proteins. In contrast, the morphology of viroplasms was altered markedly in cells in which CK1α was depleted and a moderate decrease in the production of double-stranded RNA and infectious virus was observed. These data show that CK1α is the kinase that phosphorylates NSP5 in virus-infected cells and contribute to further understanding of the role of NSP5 in RV infection.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3