Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus

Author:

Boulant Steeve1,Targett-Adams Paul1,McLauchlan John1

Affiliation:

1. MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK

Abstract

In infected cells, hepatitis C virus (HCV) core protein is targeted to lipid droplets, which serve as intracellular storage organelles. Using a tissue culture system to generate infectious HCV, we have shown that the coating of lipid droplets by the core protein occurs in a time-dependent manner and coincides with higher rates of virus production. At earlier times, the protein was located at punctate sites in close proximity to the edge of lipid droplets. Investigations by using Z-stack analysis have shown that many lipid droplets contained a single punctate site that could represent positions where core transfers from the endoplasmic reticulum membrane to droplets. The effects of lipid droplet association on virus production were studied by introducing mutations into the domain D2, the C-terminal region of the core protein necessary for droplet attachment. Alteration of a phenylalanine residue that was crucial for lipid droplet association generated an unstable form of the protein that could only be detected in the presence of a proteasome inhibitor. Moreover, converting two proline residues in D2 to alanines blocked coating of lipid droplets by core, although the protein was directed to punctate sites that were indistinguishable from those observed at early times for wild-type core protein. Neither of these virus mutants gave rise to virus progeny. By contrast, mutation at a cysteine residue positioned 2 aa upstream of the phenylalanine residue did not affect lipid droplet localization and produced wild-type levels of infectious progeny. Taken together, our findings indicate that lipid droplet association by core is connected to virus production.

Publisher

Microbiology Society

Subject

Virology

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3