In vitro and in vivo identification of structural and sequence elements in the 5′ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation

Author:

Lu Jie1,Zhang Jiamin1,Wang Xiaochun1,Jiang Hong1,Liu Chuanfeng1,Hu Yuanyang1

Affiliation:

1. State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China

Abstract

Ectropis obliquapicorna-like virus (EoPV) is a newly described insect virus that is classified as a putative member of the genusIflavirus. The virus possesses a large, positive-sense RNA genome encoding a single polyprotein that shares physicochemical properties with those of members of the familyPicornaviridae. The 5′ untranslated region (5′ UTR) plays an important role in picornavirus translation initiation, as it contains an internal ribosome entry site (IRES) that mediates cap-independent translation. To investigate translation in EoPV, an extensive range of mutations were engineered within the 5′ UTR and the effects of these changes were examinedin vitroandin vivoby using a bicistronic construct. Results showed that deletions within the first 63 nt had little impact on IRES activity, whilst core IRES function was contained within stem–loops C and D, as their removal abrogated IRES activity significantly. In contrast to these findings, removal of stem–loop G containing two cryptic AUGs caused a remarkable increase in IRES activity, which was further investigated by site-directed mutagenesis at these two positions. It was also confirmed that initiation of protein synthesis occurs at AUG6 (position 391–394) and not at the AUG immediately downstream of the polypyrimidine tract. Mutation of the polypyrimidine tract (CCTTTC) had a slight effect on EoPV IRES activity. Furthermore, mutations of the RAAA motif led to a decrease in IRES activity of approximately 40 %in vitro, but these results were not supported byin vivoexperiments. In conclusion, this study reveals that the EoPV IRES element is unique, although it has features in common with the type II IRESs.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3