Affiliation:
1. The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Campus, Roslin, Midlothian EH25 9RG, UK
Abstract
Herpesviruses encode microRNAs (miRNAs) that target both virus and host genes; however, their role in herpesvirus biology is understood poorly. We identified previously eight miRNAs encoded by ovine herpesvirus-2 (OvHV-2), the causative agent of malignant catarrhal fever (MCF), and have now investigated the role of these miRNAs in regulating expression of OvHV-2 genes that play important roles in virus biology. ORF20 (cell cycle inhibition), ORF50 (reactivation) and ORF73 (latency maintenance) each contain predicted targets for several OvHV-2 miRNAs. Co-transfection of miRNA mimics with luciferase reporter constructs containing the predicted targets showed the 5′ UTRs of ORF20 and ORF73 contain functional targets for ovhv-miR-2 and ovhv2-miR-8, respectively, and the 3′ UTR of ORF50 contains a functional target for ovhv2-miR-5. Transfection of BJ1035 cells (an OvHV-2-infected bovine T-cell line) with the relevant miRNA mimic resulted in a significant decrease in ORF50 and a smaller but non-significant decrease in ORF20. However, we were unable to demonstrate a decrease in ORF73. MCF is a disease of dysregulated lymphocyte proliferation; miRNA inhibition of ORF20 expression may play a role in this aberrant lymphocyte proliferation. The proteins encoded by ORF50 and ORF73 play opposing roles in latency. It has been hypothesized that miRNA-induced inhibition of virus genes acts to ensure that fluctuations in virus mRNA levels do not result in reactivation under conditions that are unfavourable for viral replication and our data supported this hypothesis.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献