Specificity of human rhinovirus 2Apro is determined by combined spatial properties of four cleavage site residues

Author:

Neubauer David1,Aumayr Martina1,Gösler Irene1,Skern Tim1

Affiliation:

1. Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria

Abstract

The 2A proteinase (2Apro) of human rhinoviruses cleaves the virally encoded polyprotein between the C terminus of VP1 and its own N terminus. Poor understanding of the 2Apro substrate specificity of this enzyme has hampered progress in developing inhibitors that may serve as antiviral agents. We show here that the 2Apro of human rhinovirus (HRV) 1A and 2 (rhinoviruses from genetic group A) cannot self-process at the HRV14 (a genetic group B rhinovirus) cleavage site. When the amino acids in the cleavage site of HRV2 2Apro (Ile-Ile-Thr-Thr-Ala*Gly-Pro-Ser-Asp) were singly or doubly replaced with the corresponding HRV14 residues (Asp-Ile-Lys-Ser-Tyr*Gly-Leu-Gly-Pro) at positions from P3 to P2′, HRV1A and HRV2 2Apro cleavage took place at WT levels. However, when three or more positions of the HRV1A or 2 2Apro were substituted (e.g. at P2, P1 and P2′), cleavage in vitro was essentially eliminated. Introduction of the full HRV14 cleavage site into a full-length clone of the HRV1A and transfection of HeLa cells with a transcribed RNA did not give rise to viable virus. In contrast, revertant viruses bearing cysteine at the P1 position or proline at P2′ were obtained when an RNA bearing the three inhibitory amino acids was transfected. Reversions in the enzyme affecting substrate specificity were not found in any of the in vivo experiments. Modelling of oligopeptide substrates onto the structure of HRV2 2Apro revealed no appreciable differences in residues of HRV2 and HRV14 in the respective substrate binding sites, suggesting that the overall shape of the substrate is important in determining binding efficiency.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3