Affiliation:
1. College of Marine Science, Shandong University at Weihai, Weihai 264209, PR China
2. State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
Abstract
A novel Gram-stain-negative, rod-shaped, gliding, facultatively anaerobic, oxidase-negative and catalase-positive bacterium, designated FA350T, was isolated from coastal sediment from Xiaoshi Island, Weihai, China. Strain FA350T showed growth on modified nutrient agar supplemented with 0.1 % d-(+)-trehalose and with distilled water replaced by seawater. Optimal growth occurred at 33 °C and pH 8.5 with 4 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain FA350T belongs to a novel bacterial order in the class
Deltaproteobacteria
, and the most closely related type strains belong to the order
Desulfuromonadales
, with 85.1–85.6 % 16S rRNA gene sequence similarity. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol and two unknown phospholipids. Major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 and iso-C17 : 1ω10c and menaquinone MK-7 was the sole respiratory quinone. The DNA G+C content of strain FA350T was 60.3 mol%. The isolate and closely related environmental clones formed a novel order-level clade in the class
Deltaproteobacteria
. Comparative analysis of 16S rRNA gene sequences and characterization indicated that strain FA350T may represent a novel order of the
Deltaproteobacteria
. Here, we propose the name Bradymonas sediminis gen. nov., sp. nov. to accommodate strain FA350T. The type strain of Bradymonas sediminis is FA350T ( = DSM 28820T = CICC 10904T); Bradymonadales ord. nov. and Bradymonadaceae fam. nov. are also proposed to accommodate the novel taxon.
Funder
China Ocean Mineral Resources R & D Association (COMRA) Special Foundation
National Science and Technology Major Project of China
National Natural Science Foundation of China
Subject
General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献