Effects of oriC relocation on control of replication initiation in Bacillus subtilis

Author:

Moriya Shigeki1,Kawai Yoshikazu2,Kaji Sakiko3,Smith Adrian4,Harry Elizabeth J.1,Errington Jeffery2

Affiliation:

1. Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia

2. Institute for Cell and Molecular Biosciences, University of Newcastle, Framlington Place, Newcastle NE2 4HH, UK

3. Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

4. Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Locked Bag No. 6, Newtown, NSW 2042, Australia

Abstract

In bacteria, DNA replication initiation is tightly regulated in order to coordinate chromosome replication with cell growth. InEscherichia coli, positive factors and negative regulatory mechanisms playing important roles in the strict control of DNA replication initiation have been reported. However, it remains unclear how bacterial cells recognize the right time for replication initiation during the cell cycle. In the Gram-positive bacteriumBacillus subtilis, much less is known about the regulation of replication initiation, specifically, regarding negative control mechanisms which ensure replication initiation only once per cell cycle. Here we report that replication initiation was greatly enhanced in strains that had the origin of replication (oriC) relocated to various loci on the chromosome. WhenoriCwas relocated to new loci further than 250 kb counterclockwise from the native locus, replication initiation became asynchronous and earlier than in the wild-type cells. In twooriC-relocated strains (oriCatargGorpnbA, 25 ° or 30 ° on the 36 ° chromosome map, respectively), DnaA levels were higher than in the wild-type but not enough to cause earlier initiation of replication. Our results suggest that the initiation capacity of replication is accumulated well before the actual time of initiation, and its release may be suppressed by a unique DNA structure formed near the nativeoriClocus.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3