The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger

Author:

Braaksma Machtelt12,Smilde Age K.12,van der Werf Mariët J.12,Punt Peter J.12

Affiliation:

1. Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands

2. TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands

Abstract

Proteolytic degradation by host proteases is one of the key issues in the application of filamentous fungi for non-fungal protein production. In this study the influence of several environmental factors on the production of extracellular proteases ofAspergillus nigerwas investigated systematically in controlled batch cultures. Of all factors investigated in a series of initial screening experiments, culture pH and nitrogen concentration in particular strongly affected extracellular protease activities. For instance, at a culture pH of 4, protease activity was higher than at pH 5, and protease activity increased with increasing concentrations of ammonium as nitrogen source. Interestingly, an interdependence was observed for several of the factors studied. These possible interaction effects were investigated further using a full factorial experimental design. Amongst others, the results showed a clear interaction effect between nitrogen source and nitrogen concentration. Based on the observed interactions, the selection of environmental factors to reduce protease activity is not straightforward, as unexpected antagonistic or synergistic effects occur. Furthermore, not only were the effects of the process parameters on maximum protease activity investigated, but five other protease-related phenotypes were studied as well, such as maximum specific protease activity and maximum protease productivity. There were significant differences in the effect of the environmental parameters on the various protease-related phenotypes. For instance, pH significantly affected final levels of protease activity, but not protease productivity. The results obtained in this study are important for the optimization ofA. nigerfor protein production.

Publisher

Microbiology Society

Subject

Microbiology

Reference44 articles.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3