Affiliation:
1. Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
2. Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia–CNRS–IRD, UMR 5096, IRD Montpellier, France
Abstract
Type III secretion (T3S) systems play key roles in the assembly of flagella and the translocation of bacterial effector proteins into eukaryotic host cells. Eleven proteins which are conserved among Gram-negative plant and animal pathogenic bacteria have been proposed to build up the basal structure of the T3S system, which spans both inner and outer bacterial membranes. We studied six conserved proteins, termed Hrc, predicted to reside in the inner membrane of the plant pathogenXanthomonas campestrispv. vesicatoria. The membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV was studied by translational fusions to a dual alkaline phosphatase–β-galactosidase reporter protein. Two proteins, HrcU and HrcV, were found to have the same membrane topology as theYersiniahomologues YscU and YscV. For HrcR, the membrane topology differed from the model for the homologue fromYersinia, YscR. For our data on three other protein families, exemplified by HrcD, HrcS and HrcT, we derived the first topology models. Our results provide what is believed to be the first complete model of the inner membrane topology of any bacterial T3S system and will aid in elucidating the architecture of T3S systems by ultrastructural analysis.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献