An archaeal order with multiple minichromosome maintenance genes

Author:

Walters Alison D.1,Chong James P. J.1

Affiliation:

1. Department of Biology (Area 5), PO Box 373, University of York, York YO10 5YW, UK

Abstract

In eukaryotes, a complex of six highly related minichromosome maintenance (MCM) proteins is believed to function as the replicative helicase. Until recently, systems for exploring the molecular mechanisms underlying eukaryotic MCM function have been biochemically intractable. To overcome this, molecular studies of MCM function have been carried out using MCM homologues from the archaea. Archaeal MCM systems studied to date possess a single functional MCM, which forms a homohexameric complex that displays DNA binding, ATPase and helicase activities. We have identified an archaeal order that possesses multiple MCM homologues. blast searches of available Methanococcales genomes reveal that members of this order possess between two and eight MCM homologues. Phylogenetic analysis suggests that an ancient duplication in the Methanococcales gave rise to two major groups of MCMs. One group contains Methanococcus maripaludis S2 McmD and possesses a conserved C-terminal insert similar to one observed in eukaryotic MCM3, while the other group contains McmA, -B and -C. Analysis of the genome context of MCMs in the latter group indicates that these genes could have arisen from phage-mediated events. When co-expressed in Escherichia coli, the four MCMs from M. maripaludis co-purify, indicating the formation of heteromeric complexes in vitro. The presence of homologues from both groups in all Methanococcales indicates that there could be functionally important differences between these proteins and that Methanococcales MCMs may therefore provide an interesting additional model for eukaryotic MCM function.

Publisher

Microbiology Society

Subject

Microbiology

Reference45 articles.

1. Gapped blast and psi-blast: a new generation of protein database search programs;Altschul;Nucleic Acids Res,1997

2. Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog;Bae;Structure,2009

3. Fitting a mixture model by expectation maximization to discover motifs in biopolymers;Bailey;Proc Int Conf Intell Syst Mol Biol,1994

4. Archaeal MCM has separable processivity, substrate choice and helicase domains;Barry;Nucleic Acids Res,2007

5. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii;Bult;Science,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3