Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures

Author:

Mäkelä Miia R.1,Hildén Kristiina1,Hatakka Annele1,Lundell Taina K.1

Affiliation:

1. Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, PO Box 56, FIN-00014 University of Helsinki, Finland

Abstract

Oxalate decarboxylase (ODC) catalyses the conversion of oxalic acid to formic acid and CO2in bacteria and fungi. In wood-decaying fungi the enzyme has been linked to the regulation of intra- and extracellular quantities of oxalic acid, which is one of the key components in biological decomposition of wood. ODC enzymes are biotechnologically interesting for their potential in diagnostics, agriculture and environmental applications, e.g. removal of oxalic acid from industrial wastewaters. We identified a novel ODC in mycelial extracts of two wild-type isolates ofDichomitus squalens, and cloned the correspondingDs-odcgene. The primary structure of the Ds-ODC protein contains two conserved Mn-binding cupin motifs, but at the N-terminus, a unique, approximately 60 aa alanine-serine-rich region is found. Real-time quantitative RT-PCR analysis confirmed gene expression when the fungus was cultivated on wood and in liquid medium. However, addition of oxalic acid in liquid cultures caused no increase in transcript amounts, thereby indicating a constitutive rather than inducible expression ofDs-odc. The detected stimulation of ODC activity by oxalic acid is more likely due to enzyme activation than to transcriptional upregulation of theDs-odcgene. Our results support involvement of ODC in primary rather than secondary metabolism in fungi.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3