Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli

Author:

Nakanishi Noriko1,Tashiro Kosuke2,Kuhara Satoru2,Hayashi Tetsuya3,Sugimoto Nakaba1,Tobe Toru1

Affiliation:

1. Division of Applied Microbiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

2. Department of Genetic Resources Technology, Faculty of Agriculture, Kyusyu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan

3. Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan

Abstract

Enterohaemorrhagic Escherichia coli (EHEC) colonizes and proliferates at the mucosal surface, inducing severe diarrhoea. Short-chain fatty acids (SCFAs) are abundant in the intestine owing to the metabolic activity of microflora, and are important for colonic health. We found that, although a high concentration of SCFAs inhibited the growth of EHEC, at low concentrations, the SCFAs markedly enhanced the expression of the virulence genes required for cell adherence and the induction of attaching and effacing (A/E) lesions. Of the SCFAs tested, butyrate markedly enhanced the expression of these virulence-associated genes, even at the low concentration of 1.25 mM, but acetate and propionate showed only a small effect at concentrations higher than 40 mM. Butyrate enhanced the promoter activity of the LEE1 operon, which encodes a global regulator of the LEE genes, Ler. This enhancement was dependent on a regulator, PchA. Butyrate sensing was completely abrogated by the deletion of lrp, the gene for the leucine-responsive regulatory protein, Lrp. Expression of a constitutively active mutant of Lrp enhanced the expression of the LEE genes in the absence of butyrate, and a response-defective Lrp derivative reduced the response to butyrate. Thus, upon entering the distal ileum, EHEC may respond to the higher butyrate level via Lrp by increasing its virulence expression, leading to efficient colonization of the target niche.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3