Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157 : H7 virulence

Author:

House B.1,Kus J. V.1,Prayitno N.1,Mair R.2,Que L.1,Chingcuanco F.1,Gannon V.3,Cvitkovitch D. G.2,Barnett Foster D.1

Affiliation:

1. Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada

2. Faculty of Dentistry, University of Toronto, Toronto, ON, Canada

3. Public Health Agency of Canada, Lethbridge, Alberta, Canada

Abstract

Enterohaemorrhagic Escherichia coli (EHEC) O157 : H7 is naturally exposed to a wide variety of stresses including gastric acid shock, and yet little is known about how this stress influences virulence. This study investigated the impact of acid stress on several critical virulence properties including survival, host adhesion, Shiga toxin production, motility and induction of host-cell apoptosis. Several acid-stress protocols with relevance for gastric passage as well as external environmental exposure were included. Acute acid stress at pH 3 preceded by acid adaptation at pH 5 significantly enhanced the adhesion of surviving organisms to epithelial cells and bacterial induction of host-cell apoptosis. Motility was also significantly increased after acute acid stress. Interestingly, neither secreted nor periplasmic levels of Shiga toxin were affected by acid shock. Pretreatment of bacteria with erythromycin eliminated the acid-induced adhesion enhancement, suggesting that de novo protein synthesis was required for the enhanced adhesion of acid-shocked organisms. DNA microarray was used to analyse the transcriptome of an EHEC O157 : H7 strain exposed to three different acid-stress treatments. Expression profiles of acid-stressed EHEC revealed significant changes in virulence factors associated with adhesion, motility and type III secretion. These results document profound changes in the virulence properties of EHEC O157 : H7 after acid stress, provide a comprehensive genetic analysis to substantiate these changes and suggest strategies that this pathogen may use during gastric passage and colonization in the human gastrointestinal tract.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3