Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice

Author:

Bhagwat Arvind A.1,Jun Won21,Liu Liu31,Kannan Porteen1,Dharne Mahesh1,Pheh Benedict1,Tall Ben D.4,Kothary Mahendra H.4,Gross Kenneth C.1,Angle Scott5,Meng Jianghong3,Smith Allen6

Affiliation:

1. Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA

2. Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742-7521, USA

3. Department of Food Science and Nutrition, University of Maryland, College Park, MD 20742-7521, USA

4. Food and Drug Administration, Division of Virulence Assessment, Laurel, MD 20708, USA

5. College of Agriculture, University of Maryland, College Park, MD 20742-7521, USA

6. Diet Genomics and Immunology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-2350, USA

Abstract

We purified osmoregulated periplasmic glucans (OPGs) fromSalmonella entericaserovar Typhimurium and found them to be composed of 100 % glucose with 2-linked glucose as the most abundant residue, with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structural genes for OPG biosynthesis,opgGandopgH, form a bicistronic operon, and insertion of a kanamycin resistance gene cassette into this operon resulted in a strain devoid of OPGs. TheopgGHmutant strain was impaired in motility and growth under low osmolarity conditions. TheopgGHmutation also resulted in a 2 log increase in the LD50in mice compared to the wild-type strain SL1344. Inability to synthesize OPGs had no significant impact on the organism's lipopolysaccharide pattern or its ability to survive antimicrobial peptides-, detergent-, pH- and nutrient-stress conditions. We observed that theopgGH-defective strain respired at a reduced rate under acidic growth conditions (pH 5.0) and had lower ATP levels compared to the wild-type strain. These data indicate that OPGs ofS.Typhimurium contribute towards mouse virulence as well as growth and motility under low osmolarity growth conditions.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3