Heat stability of prion rods and recombinant prion protein in water, lipid and lipid–water mixtures

Author:

Appel Thomas Raul1,Wolff Michael1,von Rheinbaben Friedrich2,Heinzel Michael2,Riesner Detlev1

Affiliation:

1. Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Gebäude 26.12, D-40225 Düsseldorf, Germany1

2. Henkel KGaA, Düsseldorf, Germany2

Abstract

Prion rods, i.e. insoluble infectious aggregates of the N-terminally truncated form of the prion protein, PrP 27–30, and the corresponding recombinant protein, rPrP(90–231), were autoclaved in water, bovine lipid or lipid–water mixtures for 20 min at temperatures from 100 to 170 °C. A protocol was developed for the quantitative precipitation of small amounts of protein from large excesses of lipid. PrP remaining undegraded after autoclaving was quantified by Western blot and degradation factors were calculated. The Arrhenius plot of the rate of degradation vs temperature yielded linear relationships for prion rods in water or lipid–water as well as for rPrP(90–231) in lipid–water. The presence of lipids increased the heat stability of prion rods, especially at lower temperatures. Prion rods had a much higher thermal stability compared to rPrP. Autoclaving of prion rods in pure lipid gave different results – not simple degradation but bands indicative of covalently linked dimers, tetramers and higher aggregates. The heat stability of prion rods in pure lipid exceeded that in lipid–water mixtures. Degradation factors larger than 104 were reached at 170 °C in the presence of lipids and at 150 °C in the absence of lipids. The linear correlation of the data allows cautious extrapolation to conditions not tested, i.e. temperatures higher than 170 °C. A factual basis for assessing the biological safety of industrial processes utilizing potentially BSE-or scrapie-contaminated animal fat is provided.

Publisher

Microbiology Society

Subject

Virology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Broken but not beaten: Challenge of reducing the amyloids pathogenicity by degradation;Journal of Advanced Research;2024-04

2. Hydrothermal Liquefaction of an Animal Carcass for Biocrude Oil;Energy & Fuels;2019-10-15

3. The Prion-Like Properties of Amyloid-β Assemblies: Implications for Alzheimer's Disease;Cold Spring Harbor Perspectives in Medicine;2016-06-07

4. Spread and Control of Prion Diseases in the Food and Feed Chains;Significance, Prevention and Control of Food Related Diseases;2016-04-13

5. Viral Zoonoses;Zoonoses;2015-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3