Simian rhesus rotavirus is a unique heterologous (non-lapine) rotavirus strain capable of productive replication and horizontal transmission in rabbits

Author:

Ciarlet Max1,Estes Mary K.1,Conner Margaret E.21

Affiliation:

1. Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Mailstop BCM-385, Houston, TX 77030, USA1

2. Veterans Affairs Medical Center, Houston, TX 77030, USA2

Abstract

Simian rhesus rotavirus (RRV) is the only identified heterologous (non-lapine) rotavirus strain capable of productive replication at a high inoculum dose of virus (>108 p.f.u.) in rabbits. To evaluate whether lower doses of RRV would productively infect rabbits and to obtain an estimate of the 50% infectious dose, rotavirus antibody-free rabbits were inoculated orally with RRV at inoculum doses of 103, 105 or 107 p.f.u. Based on faecal virus antigen or infectious virus shedding, RRV replication was observed with inoculum doses of 107 and 105 p.f.u., but not 103 p.f.u. Horizontal transmission of RRV to one of three mock-inoculated rabbits occurred 4–5 days after onset of virus antigen shedding in RRV-infected rabbits. Rabbits infected at 107 and 105, but not 103, p.f.u. of RRV developed rotavirus-specific immune responses and were completely (100%) protected from lapine ALA rotavirus challenge. These data confirm that RRV can replicate productively and spread horizontally in rabbits. In attempts to elucidate the genetic basis of the unusual replication efficacy of RRV in rabbits, the sequence of the gene encoding the lapine non-structural protein NSP1 was determined. Sequence analysis of the NSP1 of three lapine rotaviruses revealed a high degree of amino acid identity (85–88%) with RRV. Since RRV and lapine strains also share similar VP7s (96–97%) and VP4s (69–70%), RRV might replicate efficiently in rabbits because of the high relatedness of these three gene products, each implicated in host range restriction.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3