Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor-recognition motif

Author:

Ruiz-Jarabo Carmen M.1,Sevilla Noemí1,Dávila Mercedes1,Gómez-Mariano Gema1,Baranowski Eric1,Domingo Esteban1

Affiliation:

1. Centro de Biología Molecular ‘Severo Ochoa’, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain1

Abstract

The antigenic properties and genetic stability of a multiply passaged foot-and-mouth disease virus (FMDV) clone C-S8c1 with an Arg-Gly-Gly triplet (RGG) instead of the Arg-Gly-Asp (RGD) integrin-recognition motif at positions 141 to143 of capsid protein VP1 are described. Clear antigenic differences between FMDV RGG and clone C-S8c1 have been documented in ELISA, enzyme-linked immunoelectrotransfer (Western) blot and neutralization assays using site A-specific monoclonal antibodies and anti-FMDV polyclonal antibodies from swine and guinea pigs. The results validate with a live virus the role of the RGD (in particular Asp-143) in recognition of (and neutralization by) antibodies, a role previously suggested by immunochemical and structural studies with synthetic peptides. The FMDV RGG was genetically stable in a large proportion of serial infections of BHK-21 cells. However, a revertant virus with RGD was generated in one out of six passage series. Interestingly, this revertant FMDV did not reach dominance but established an equilibrium with its parental FMDV RGG, accompanied by an increase of quasispecies complexity at the sequences around the RGG triplet. FMDV RGG exhibited a selective disadvantage relative to other RGD-containing clones isolated from the same parental FMDV population. The results suggest that large antigenic variations can be prompted by replacements at critical capsid sites, including those involved in receptor recognition. These critical replacements may yield viruses whose stability allows them to replicate efficiently and to expand the sequence repertoire of an antigenic site.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3