Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus

Author:

Nagata Tatsuya1,Inoue-Nagata Alice K.2,van Lent Jan1,Goldbach Rob1,Peters Dick1

Affiliation:

1. Department of Virology, Wageningen Agricultural University, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands1

2. EMBRAPA/Hortaliças, 70359-970, PO Box 218, Brasília, DF, Brazil2

Abstract

The competence of a Frankliniella occidentalis and a Thrips tabaci population to transmit Tomato spotted wilt virus (TSWV) was analysed. Adults of the F. occidentalis population transmitted this virus efficiently, whereas those of the thelytokous T. tabaci population failed to transmit. TSWV replicated in the midgut of the larvae of both populations after ingestion of virus; however, lower amounts accumulated in T. tabaci larvae than in F. occidentalis larvae. The virus was almost undetectable in T. tabaci adults, whereas high titres were readily detected in the F. occidentalis adults. The first infections in F. occidentalis larvae were detected by immunocytochemical studies in midgut epithelial and subsequently in midgut muscle cells, the ligaments, and finally in the salivary glands. The infections were weaker in the midgut epithelial and muscle cells of T. tabaci larvae, followed by an almost complete absence of any infection in the ligaments, and a complete absence in the salivary glands. Studies by electron microscopy revealed the budding of some virus particles from the basal membrane of midgut epithelial cells of F. occidentalis larvae into the extracellular space of the basal labyrinth. Enveloped virus particles were also seen in midgut muscle cells of F. occidentalis larvae. They were not discerned in epithelial and muscle cells of T. tabaci larvae and adults. This study showed that the rate of virus replication in the midgut and the extent of virus migration from the midgut to the visceral muscle cells and the salivary glands are probably crucial factors in the determination of vector competence.

Publisher

Microbiology Society

Subject

Virology

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3