Genes Ia, II, III, IV and V of Soybean chlorotic mottle virus are essential but the gene Ib product is non-essential for systemic infection

Author:

Takemoto Yutaka1,Hibi Tadaaki1

Affiliation:

1. Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan1

Abstract

Soybean chlorotic mottle virus (SbCMV) is the type species of the genus ‘Soybean chlorotic mottle-like viruses’, within the family Caulimoviridae. The double-stranded DNA genome of SbCMV (8178 bp) contains eight major open reading frames (ORFs). Viral genes essential and non-essential for the replication and movement of SbCMV were investigated by mutational analysis of an infectious 1·3-mer DNA clone. The results indicated that ORFs Ia, II, III, IV and V were essential for systemic infection. The product of ORF Ib was non-essential, although the putative tRNAMet primer-binding site in ORF Ib was proved to be essential. Immunoselection PCR revealed that an ORF Ia deletion mutant was encapsidated in primarily infected cells, indicating that ORF Ia is required for virus movement but not for replication. ORF IV was confirmed to encode a capsid protein by peptide sequencing of the capsid. Analysis of the viral transcripts showed that the SbCMV DNA genome gives rise to a pregenomic RNA and an ORF VI mRNA, as shown in the case of Cauliflower mosaic virus.

Publisher

Microbiology Society

Subject

Virology

Reference49 articles.

1. Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants;Baughman;Proceedings of the National Academy of Sciences, USA,1988

2. Gene II product of an aphid-nontransmissible isolate of cauliflower mosaic virus expressed in a baculovirus system possesses aphid transmission factor activity;Blanc;Virology,1993

3. Posttranscriptional trans-activation in cauliflower mosaic virus;Bonneville;Cell,1989

4. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis;Cleveland;Journal of Biological Chemistry,1977

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3