Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex

Author:

Snijder Eric J.1,van Tol Hans1,Roos Norbert2,Pedersen Ketil W.2

Affiliation:

1. Department of Virology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands1

2. Department of Biology, Division of Electron Microscopy, University of Oslo, Norway2

Abstract

The replicase polyproteins of equine arteritis virus (EAV; family Arteriviridae, order Nidovirales) are processed by three viral proteases to yield 12 non-structural proteins (nsps). The nsp2 and nsp3 cleavage products have previously been found to interact, a property that allows nsp2 to act as a co-factor in the processing of the downstream part of the polyprotein by the nsp4 protease. Remarkably, upon infection of Vero cells, but not of BHK-21 or RK-13 cells, EAV nsp2 is now shown to be subject to an additional, internal, cleavage. In Vero cells, approximately 50% of nsp2 (61 kDa) was cleaved into an 18 kDa N-terminal part and a 44 kDa C-terminal part, most likely by a host cell protease that is absent in BHK-21 and RK-13 cells. Although the functional consequences of this additional processing step are unknown, the experiments in Vero cells revealed that the C-terminal part of nsp2 interacts with nsp3. Most EAV nsps localize to virus-induced double-membrane structures in the perinuclear region of the infected cell, where virus RNA synthesis takes place. It is now shown that, in an expression system, the co-expression of nsp2 and nsp3 is both necessary and sufficient to induce the formation of double-membrane structures that strikingly resemble those found in infected cells. Thus, the nsp2 and nsp3 cleavage products play a crucial role in two processes that are common to positive-strand RNA viruses that replicate in mammalian cells: controlled proteolysis of replicase precursors and membrane association of the virus replication complex.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3