Purification of Autographa californica nucleopolyhedrovirus DNA polymerase from infected insect cells

Author:

Hang Xin1,Guarino Linda A.1

Affiliation:

1. Departments of Biochemistry & Biophysics1 and Entomology2, Texas A&M University, College Station, TX 77843-2128, USA

Abstract

Autographa californica nucleopolyhedrovirus (AcMNPV) DNA polymerase was purified from virus-infected cells using conventional chromatographic methods. The enzymatic activity of fractions eluting from single-stranded agarose gels was found to exactly coincide with a single polypeptide with an apparent molecular mass of approximately 110000 Da on denaturing polyacrylamide gels stained with Coomassie blue. This purification scheme resulted in a 228-fold purification of AcMNPV DNA polymerase with recovery of 3·5% of the initial activity. The specific activity of the most purified fraction of DNA polymerase was 5000 units/mg, which is sufficiently high to eliminate the possibility that contaminants significantly contribute to the polymerase activity. Preparations of purified DNA polymerase had 3′–5′ exonuclease activity, but no 5′–3′ exonuclease activity. The proofreading activity was apparently an intrinsic property of the enzyme as the ratio of nuclease activity to polymerase activity was constant throughout purification. Using a singly-primed M13 DNA template, RF-II DNA was detected within 3 min, indicating a polymerization rate of 40 nt/s. The effects of several DNA polymerase inhibitors on the enzymatic activity of purified DNA polymerase were also determined.

Publisher

Microbiology Society

Subject

Virology

Reference39 articles.

1. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus;Ayres;Virology,1994

2. A conserved 3′–5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases;Bernad;Cell,1989

3. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford;Analytical Biochemistry,1976

4. Identification of eukaryotic DNA replication proteins using the simian virus 40 in vitro replication system;Brush;Methods in Enzymology,1995

5. Molecular analysis of a baculovirus regulatory gene;Carson;Virology,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3