Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus

Author:

Sinzger C.1,Kahl M.1,Laib K.1,Klingel K.1,Rieger P.2,Plachter B.3,Jahn G.1

Affiliation:

1. Department of Medical Virology1, and Department of Molecular Pathology2, University of Tübingen, D-72076 Tübingen, Germany

2. Department of Pathology, University of Heidelberg, D-69120 Heidelberg, Germany3

3. Institute of Virology, University of Mainz, D-55101 Mainz, Germany4

Abstract

Marked interstrain differences in the endothelial cell (EC) tropism of human cytomegalovirus (HCMV) isolates have been described. This study aimed to define the step during the replicative cycle of HCMV that determines this phenotype. The infection efficiency of various HCMV strains in EC versus fibroblasts was quantified by immunodetection of immediate early (IE), early and late viral antigens. Adsorption and penetration were analysed by radiolabelled virus binding assays and competitive HCMV-DNA-PCR. The translocation of penetrated viral DNA to the nucleus of infected cells was quantified by competitive HCMV-DNA-PCR in pure nuclear fractions. The intracytoplasmic translocation of capsids that had penetrated was followed by immunostaining of virus particles on a single particle level; this was correlated with the initiation of viral gene expression by simultaneous immunostaining of viral IE antigens. The infectivity of nonendotheliotropic HCMV strains in EC was found to be 100–1000-fold lower when compared to endotheliotropic strains. The manifestation of this phenotype at the level of IE gene expression indicated the importance of initial replication events. Surprisingly, no interstrain differences were detected during virus entry. However, dramatic interstrain differences were found regarding the nuclear translocation of penetrated viral DNA. With nonendotheliotropic strains, the content of viral DNA in the cell nucleus was 100–1000-fold lower in EC when compared to endotheliotropic strains, thereby reflecting the strain differences in IE gene expression. Simultaneous staining of viral particles and viral IE antigen revealed that interstrain differences in the transport of penetrated capsids towards the nucleus of endothelial cells determine the EC tropism of HCMV.

Publisher

Microbiology Society

Subject

Virology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3