Structural relationship between nucleocapsid-binding activity of the rabies virus phosphoprotein (P) and exposure of epitope 402-13 located at the C terminus

Author:

Toriumi Harufusa1,Honda Yoshikazu1,Morimoto Kinjiro1,Tochikura Tadafumi S.1,Kawai Akihiko1

Affiliation:

1. Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan1

Abstract

The structural changes of the nominal phosphoprotein (P) of rabies virus using a monoclonal antibody, mAb #402-13, was investigated. This mAb recognized a linear epitope that was mapped roughly to a C-terminal region of the P protein, ranging from aa 256 to 297. The P gene products were detected by the mAb in immunoblot assays, the products of which were produced either in BHK-21 cells or in Escherichia coli cells. The mAb, however, detected very low levels of P gene products in immunoprecipitation assays. The mAb recognized the nucleocapsid (NC)-associated P proteins but recognized free P protein and free N–P complex produced in the infected cells much less efficiently. When the P proteins were released from the NC, however, they were no longer recognized by the mAb. Similar results were obtained from BHK-21 cells co-transfected with P and N cDNAs. Furthermore, studies with C-terminally truncated P protein mutants revealed that the NC-binding ability of the P protein was dependent on the presence of the C-terminal epitope region. From these results, it is thought that the 402-13 epitope region is concealed when the P protein is present in a free form or free N–P complex but is exposed when it is associated with the NC. The C-terminal epitope region seemed to be essential for the P protein to be associated with the NC but not for the formation of free N–P complexes with newly synthesized N protein.

Publisher

Microbiology Society

Subject

Virology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3