The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus

Author:

Sawicki Dorothea L.1,Wang Tao1,Sawicki Stanley G.1

Affiliation:

1. Department of Microbiology and Immunology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614, USA1

Abstract

In addition to the RI (replicative intermediate RNA) and native RF (replicative form RNA), mouse hepatitis virus-infected cells contained six species of RNA intermediates active in transcribing subgenomic mRNA. We have named these transcriptive intermediates (TIs) and native transcriptive forms (TFs) because they are not replicating genome-sized RNA. Based on solubility in high salt solutions, approximately 70% of the replicating and transcribing structures that accumulated in infected cells by 5–6 h post-infection were multi-stranded intermediates, the RI/TIs. The other 30% were in double-stranded structures, the native RF/TFs. These replicating and transcribing structures were separated by velocity sedimentation on sucrose gradients or by gel filtration chromatography on Sepharose 2B and Sephacryl S-1000, and migrated on agarose gels during electrophoresis, according to their size. Digestion with RNase T1 at 1–10 units/μg RNA resolved RI/TIs into RF/TF cores and left native RF/TFs intact, whereas RNase A at concentrations of 0·02 μg/μg RNA or higher degraded both native RF/TFs and RI/TIs. Viral RI/TIs and native RF/TFs bound to magnetic beads containing oligo(dT)25, suggesting that the poly(A) sequence on the 3′ end of the positive strands was longer than any poly(U) on the negative strands. Kinetics of incorporation of [3H]uridine showed that both the RI and TIs were transcriptionally active and the labelling of RI/TIs was not the dead-end product of aberrant negative-strand synthesis. Failure originally to find TIs and TF cores was probably due to overdigestion with RNase A.

Publisher

Microbiology Society

Subject

Virology

Reference38 articles.

1. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome;Almazan;Proceedings of the National Academy of Sciences, USA,2000

2. Isolation and properties of an intact phage-specific replicative form of RNA phage M12;Ammann;Journal of Molecular Biology,1964

3. Coronavirus transcription early in infection;An;Journal of Virology,1998

4. Purification and properties of the poliovirus double-stranded ribonucleic acid;Baltimore;Journal of Molecular Biology,1966

5. Structure of the poliovirus replicative intermediate RNA;Baltimore;Journal of Molecular Biology,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3