Machine learning prediction of novel pectinolytic enzymes in Aspergillus niger through integrating heterogeneous (post-) genomics data

Author:

Peng Mao1ORCID,de Vries Ronald P.1ORCID

Affiliation:

1. Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands

Abstract

Pectinolytic enzymes are a variety of enzymes involved in breaking down pectin, a complex and abundant plant cell-wall polysaccharide. In nature, pectinolytic enzymes play an essential role in allowing bacteria and fungi to depolymerize and utilize pectin. In addition, pectinases have been widely applied in various industries, such as the food, wine, textile, paper and pulp industries. Due to their important biological function and increasing industrial potential, discovery of novel pectinolytic enzymes has received global interest. However, traditional enzyme characterization relies heavily on biochemical experiments, which are time consuming, laborious and expensive. To accelerate identification of novel pectinolytic enzymes, an automatic approach is needed. We developed a machine learning (ML) approach for predicting pectinases in the industrial workhorse fungus, Aspergillus niger. The prediction integrated a diverse range of features, including evolutionary profile, gene expression, transcriptional regulation and biochemical characteristics. Results on both the training and the independent testing dataset showed that our method achieved over 90 % accuracy, and recalled over 60 % of pectinolytic genes. Application of the ML model on the A. niger genome led to the identification of 83 pectinases, covering both previously described pectinases and novel pectinases that do not belong to any known pectinolytic enzyme family. Our study demonstrated the tremendous potential of ML in discovery of new industrial enzymes through integrating heterogeneous (post-) genomimcs data.

Publisher

Microbiology Society

Subject

General Medicine

Reference56 articles.

1. Machine learning prediction of novel pectinolytic enzymes in aspergillus niger through integrating heterogeneous (post-) genomics data;Peng;Figshare,2021

2. Pectins, Pectinases and Plant-Microbe Interactions

3. The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type;Reignault;Eur J Plant Pathol,2008

4. The carbohydrate-active enzymes database (CAZy) in 2013

5. Microbial pectinases: an ecofriendly tool of nature for industries

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3