PfaSTer: a machine learning-powered serotype caller for Streptococcus pneumoniae genomes

Author:

Lee Jonathan T.1ORCID,Li Xingpeng2,Hyde Craig2,Liberator Paul A.1,Hao Li1ORCID

Affiliation:

1. Vaccine Research & Development, Pfizer Inc., 401 N. Middletown Rd, Pearl River, NY 10965, USA

2. Early Clinical Development, Pfizer Inc., 1 Portland St, Cambridge, MA 02139, USA

Abstract

Streptococcus pneumoniae (pneumococcus) is a leading cause of morbidity and mortality worldwide. Although multi-valent pneumococcal vaccines have curbed the incidence of disease, their introduction has resulted in shifted serotype distributions that must be monitored. Whole genome sequence (WGS) data provide a powerful surveillance tool for tracking isolate serotypes, which can be determined from nucleotide sequence of the capsular polysaccharide biosynthetic operon (cps). Although software exists to predict serotypes from WGS data, most are constrained by requiring high-coverage next-generation sequencing reads. This can present a challenge in respect of accessibility and data sharing. Here we present PfaSTer, a machine learning-based method to identify 65 prevalent serotypes from assembled S. pneumoniae genome sequences. PfaSTer combines dimensionality reduction from k-mer analysis with a Random Forest classifier for rapid serotype prediction. By leveraging the model’s built-in statistical framework, PfaSTer determines confidence in its predictions without the need for coverage-based assessments. We then demonstrate the robustness of this method, returning >97 % concordance when compared to biochemical results and other in silico serotyping tools. PfaSTer is open source and available at: https://github.com/pfizer-opensource/pfaster.

Funder

Pfizer

Publisher

Microbiology Society

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3