Affiliation:
1. Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, 0084 Pretoria, South Africa
Abstract
Carbapenem-resistant
Klebsiella pneumoniae
(CRKP) remains a major clinical pathogen and public health threat with few therapeutic options. The mobilome, resistome, methylome, virulome and phylogeography of CRKP in South Africa and globally were characterized. CRKP collected in 2018 were subjected to antimicrobial susceptibility testing, screening by multiplex PCR, genotyping by repetitive element palindromic (REP)-PCR, plasmid size, number, incompatibility and mobility analyses, and PacBio’s SMRT sequencing (n=6). There were 56 multidrug-resistant CRKP, having bla
OXA-48-like and bla
NDM-1/7 carbapenemases on self-transmissible IncF, A/C, IncL/M and IncX3 plasmids endowed with prophages, traT, resistance islands, and type I and II restriction modification systems (RMS). Plasmids and clades detected in this study were respectively related to globally established/disseminated plasmids clades/clones, evincing transboundary horizontal and vertical dissemination. Reduced susceptibility to colistin occurred in 23 strains. Common clones included ST307, ST607, ST17, ST39 and ST3559. IncFIIk virulent plasmid replicon was present in 56 strains. Whole-genome sequencing of six strains revealed least 41 virulence genes, extensive ompK36 mutations, and four different K- and O-loci types: KL2, KL25, KL27, KL102, O1, O2, O4 and O5. Types I, II and III RMS, conferring m6A (G
A
TC, G
A
TGNNNNNNTTG, CA
A
NNNNNNCATC motifs) and m4C (C
C
WGG) modifications on chromosomes and plasmids, were found. The nature of plasmid-mediated, clonal and multi-clonal dissemination of blaOXA-48-like and blaNDM-1 mirrors epidemiological trends observed for closely related plasmids and sequence types internationally. Worryingly, the presence of both bla
OXA-48 and bla
NDM-1 in the same isolates was observed. Plasmid-mediated transmission of RMS, virulome and prophages influence bacterial evolution, epidemiology, pathogenicity and resistance, threatening infection treatment. The influence of RMS on antimicrobial and bacteriophage therapy needs urgent investigation.
Funder
National Health Laboratory Service