A novel approach for combining the metagenome, metaresistome, metareplicome and causal inference to determine the microbes and their antibiotic resistance gene repertoire that contribute to dysbiosis

Author:

Stebliankin Vitalii1ORCID,Sazal Musfiqur21,Valdes Camilo31,Mathee Kalai45ORCID,Narasimhan Giri14ORCID

Affiliation:

1. Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, USA

2. Present address: Microsoft Corporation, GA, Atlanta, USA

3. Present address: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA

4. Biomolecular Sciences Institute, Florida International University, Miami, FL, USA

5. Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA

Abstract

The use of whole metagenomic data to infer the relative abundance of all its microbes is well established. The same data can be used to determine the replication rate of all eubacterial taxa with circular chromosomes. Despite their availability, the replication rate profiles (metareplicome) have not been fully exploited in microbiome analyses. Another relatively new approach is the application of causal inferencing to analyse microbiome data that goes beyond correlational studies. A novel scalable pipeline called MeRRCI (Metagenome, metaResistome, and metaReplicome for Causal Inferencing) was developed. MeRRCI combines efficient computation of the metagenome (bacterial relative abundance), metaresistome (antimicrobial gene abundance) and metareplicome (replication rates), and integrates environmental variables (metadata) for causality analysis using Bayesian networks. MeRRCI was applied to an infant gut microbiome data set to investigate the microbial community’s response to antibiotics. Our analysis suggests that the current treatment stratagem contributes to preterm infant gut dysbiosis, allowing a proliferation of pathobionts. The study highlights the specific antibacterial resistance genes that may contribute to exponential cell division in the presence of antibiotics for various pathogens, namely Klebsiella pneumoniae, Citrobacter freundii, Staphylococcus epidermidis, Veilonella parvula and Clostridium perfringens . These organisms often contribute to the harmful long-term sequelae seen in these young infants.

Funder

National Institute of Health

Publisher

Microbiology Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3