dRNASb: a systems biology approach to decipher dynamics of host-pathogen interactions using temporal dual RNA-seq data

Author:

Dinarvand Mojdeh1,Koch Forrest C.1,Al Mouiee Daniel231,Vuong Kaylee1,Vijayan Abhishek1,Tanzim Afia Fariha1,Azad A. K. M.4,Penesyan Anahit5,Castaño-Rodríguez Natalia1,Vafaee Fatemeh12ORCID

Affiliation:

1. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia

2. UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia

3. Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia

4. ProCan®, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia

5. School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia

Abstract

Infection triggers a dynamic cascade of reciprocal events between host and pathogen wherein the host activates complex mechanisms to recognise and kill pathogens while the pathogen often adjusts its virulence and fitness to avoid eradication by the host. The interaction between the pathogen and the host results in large-scale changes in gene expression in both organisms. Dual RNA-seq, the simultaneous detection of host and pathogen transcripts, has become a leading approach to unravelling complex molecular interactions between the host and the pathogen and is particularly informative for intracellular organisms. The amount of in vitro and in vivo dual RNA-seq data is rapidly growing, which demands computational pipelines to effectively analyse such data. In particular, holistic, systems-level, and temporal analyses of dual RNA-seq data are essential to enable further insights into the host-pathogen transcriptional dynamics and potential interactions. Here, we developed an integrative network-driven bioinformatics pipeline, dRNASb, a systems biology-based computational pipeline to analyse temporal transcriptional clusters, incorporate molecular interaction networks (e.g. protein-protein interactions), identify topologically and functionally key transcripts in host and pathogen, and associate host and pathogen temporal transcriptome to decipher potential between-species interactions. The pipeline is applicable to various dual RNA-seq data from different species and experimental conditions. As a case study, we applied dRNASb to analyse temporal dual RNA-seq data of Salmonella -infected human cells, which enabled us to uncover genes contributing to the infection process and their potential functions and to identify putative associations between host and pathogen genes during infection. Overall, dRNASb has the potential to identify key genes involved in bacterial growth or host defence mechanisms for future uses as therapeutic targets.

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3